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Abstract:  This article presents a model for addressing the environmental-

economic power generation and dispatch (EEPGD) challenge using a 

multiobjective bilevel programming (MOBLP) approach. The optimization is 

conducted through a genetic algorithm (GA) based fuzzy goal programming 

(FGP) applied within the operational system of a thermal power plant. The 

MOBLP formulation involves segregating the first objectives into two sets and 

allocating them to distinct hierarchical decision levels (top-level and bottom-

level) for optimization. Each level encompasses one or more control variables 

associated with the power generation decision system. Fuzzy descriptions are 

employed in the optimization problems of both levels to capture the nuances 

inherent in the decision-making context. 

The FGP model formulation includes the design of membership n functions 

corresponding to defined fuzzy goals. These functions are then transformed into 

membership goals by assigning the highest membership value (unity) as the 

achievement level. Additionally, under- and over-deviational variables are 

introduced for each membership goal. The goal achievement function aims to 

minimize under-deviational variables of membership goals based on their 

weights of importance to attain an optimal solution in the decision environment. 

In solving the developed FGP model, a GA scheme is applied in two stages.  

The first stage involves the direct optimization of individual objectives for their 

fuzzy representation. In the second stage, the evaluation of the goal achievement 

function is performed to reach an optimal power generation decision. The 

efficacy of the proposed method is demonstrated through its application to the 

IEEE 6-generator 30-bus System. 

Keywords: Environmental-economic power generation, Fuzzy goal 

programming, Genetic algorithm, Membership function

 

Introduction 

The primary means of generating electric power predominantly relies on thermal power plants, with over 75% 

utilizing coal for power generation to meet societal demands. However, the combustion of fossil-fuel coal in power 

generation leads to the release of various harmful pollutants, including carbon, nitrogen, and sulfur oxides. These 

by-products have widespread implications for all living beings on Earth. Hence, there is an imperative need to 

address the Environmental-Economic Power Generation and Dispatch (EEPGD) problem, where the simultaneous 

optimization of real-power generation costs and environmental pollution, subject to operational constraints, is 

essential for the sustainable operation of thermal power plants. 

The optimization challenges within thermal power plant operations, initially explored by Dommel and Tinney [2], 

later extended to emission control by Gent and Lament [3], have evolved into a comprehensive study of EEPGD the   
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way for subsequent studies in this domain [8-11]. During the 1990s, the focus on controlling power plant emissions 

intensified, leading to various optimization methods [12-17] in compliance with the Clean Air Amendment Act of 

the 1990s [18]. Traditional approaches to EEPGD problems involved transforming multiobjective models into single 

objective problems, leading to decision-making challenges due to conflicting objectives. 

The article introduces Genetic Programming (GP) as an efficient tool for multi objective decision analysis [19], 

applied to EEPGD problems [20] for goal-oriented solutions in a crisp decision environment. However, the 

imprecise nature of parameter values associated with objectives in real-world scenarios necessitates the 

incorporation of Fuzzy Programming (FP) [21] and Stochastic Programming (SP) [24-25]. Despite these 

advancements, extensive literature on solving such problems remains limited. 

The article proposes the use of Genetic Algorithms (GAs) to solve Multi-Objective Decision Making (MODM) 

problems, particularly in the context of EEPGD [26-28]. Recognizing the conflicting nature of EEPGD objectives, 

the concept of hierarchical optimization using Bilevel Programming (BLP) [29] is introduced, considering the 

decision maker's priorities in thermal power generation. Although recent studies [30] have explored this area, the 

application of the MOBLP method to solve EEPGD problems within the framework of Fuzzy Goal Programming 

(FGP) using GA is a novel contribution. 

The article outlines a two-stage methodology involving GA-based fuzzy goal description of objectives and the 

subsequent evaluation of the goal achievement function. The effectiveness of this approach is demonstrated using 

the IEEE 6-generator 30-bus System. The paper is structured to provide a detailed description of the problem, 

MOBLP model formulation, the GA scheme, the proposed FGP model, an illustrative case example, and concluding 

remarks with suggestions for future research in subsequent sections. Now, objectives and constraints associated with 

EEPGD problem are discussed in the Sect. 2. 

 

Problem Description 

Let Pgi be the decision variables defined for generation of power (in p.u) from the ith generator of the system, i = 

1,2, ..., n. Then, let PD be total demand of power, TL be total transmission- loss (in p.u) and PL be the real power-loss 

in power generation system. 

Then, objectives as well as constraints involved with the proposed EEPGD problem are presented in the following 

section. 

Description of Objective Functions 

The two types of objectives that are inherent to EEPGD model are presented as follows. 

Economic Power Generation Objectives 

a) Fuel-cost Function 

The total fuel-cost ($/h) incurred for of power generation can be expressed as: 

,)(
1

igii
2

gii

n

i

C cPbPaF 


(1)
 

 where ii b,a  and ic represent cost-coefficients concerninggeneration of power from ith generator.  

b) Transmission-loss function 

The function associated with power transmission lines involves certain parameters which directly affect the ability 

to transfer power effectively. Here, the transmission-loss (TL) (in p.u.) occurs during power dispatch can be 

modelled as a function of generator output and that can be expressed as: 
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where 0iij B,B  and 00B  are B-coefficients in [23] associated with i-th generator in power transmission network. 

Pollution Control Functions 

In a thermal power generation system, the most harmful pollutants that are discharged separately to earth’s 

environment are oxides of nitrogen (NOx), sulphur (SOx) and carbon (COx). Thepollution control functions are 

quadratic in nature and they are expressed in terms of generators’ output Pgi ,  i = 1,2,…, n 

The functional expression oftotal quantity of NOxemissions (kg/h))is of the form:  

,
iNgiiN

2
giiN

n

1i

N fPePdE 


(3)
 

where iNiNiN f,e,d  represent NOx emission-coefficients concerned with power generation from ith generator.  

Similarly, the pollution control functions arise for SOx-and COx-emissions appear as: 

,SigiSi
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giSi

n

1i

S fPePdE 


  
(4) ,CigiCi

2
giCi

n

1i

C fPePdE 


 respectively,              (5) 

where the emission-coefficients associated  with respective expressions can be defined in an analogous to the 

expression in (3).  

Description of System Constraints 

The constraints that are adhered to EEPGD problem are defined as follows.  

Generator Capacity Constraints 

In thermal power generation system, the constraints on generators’ outputs can be presented as: 

niVVV

PPP

max
gg

min
g

 max
gigi

 min
gi

iii
...,2,1,,

,





    
(6)

 

where Pgi and Vgi represent active power and generator-bus voltage of ith generator, respectively. 

Power Balance Constraint 

The total power generated from the system must be equal to total demand (PD) and total transmission-loss in thermal 

power generation system. 

The power balance constraint takes the form: 





n

i
LDgi

TPP
1

0)( (7) 

Now, formulation of MOBLP model of the problem is discussed below. 

 

MOBLP Formulation  

In MOBLP formulation of the problem, the objectives concerning environmental-emission control are considered 

leader’s optimization problems and that concerned with economic-power generation are considered follower’s 

problems in hierarchical structure of EEPGD problem. The MOBLP model is presented as follows. 

MOBLP Model 

In the context of designing the proposed model, the vector of decision variables is divided into two distinct vector 

groups with regard to control them separately by DMs located at two hierarchical levels. 
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Let X be the vector of decision variables in power generation system. Then, let LX and FX be the subsets 

of X that are controlled by leader and follower, respectively, where L and F are used to denote leader and follower, 

respectively.  

Then, MOBLP model can be stated as [29]:   

Find ),( FL XXX so as to: 

,
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n
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(leader’s problem) 

and, for given FL XX ,  solves  
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  

(follower’s problem) 

subject to the constraints in (6) and (7),                 (8)  

where φ FL XX , XXX FL   and φ)P(X ,where P denotes the feasible solution set,   and  stand 

for ‘intersection’ and ‘union’, respectively.   

Now, the GA scheme adopted in the decision-making environment is described below. 

 

GA Scheme  

There is a variety of GA schemes in [32-33] for generating new population by employing the ‘selection’, ‘crossover’ 

and ‘mutation’ operators.  

In genetic search process, binary coded solution candidates are considered where initial population is generated 

randomly. The fitness of each chromosome (individual feasible solution) at each generation is justified with a view 

to optimizing objectives of the problem. 

Now, formulation of FGP model of the problem in (8) is described as follows. 

 

FGP Model Formulation  

In the structural framework of a BLP problem, it is conventionally considered that DM at each level is motivated to 

cooperative with other one concerning achievement of objectives in decision environment. In the sequel of making 

decision, since leader is with the power of making decision first, relaxation on his/her decision is essentially needed 

to make decision by follower to certain satisfactory level. Consequently, relaxation on individual objective values 

and components of LX need be given to certain tolerance levels for benefit of follower. Therefore, use of the 

notion of fuzzy set to solve the problem in (8) would be effectiveone to reach overall satisfactory decision. 

The fuzzy version of the problem is discussed as follows. 
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Fuzzy Goal Description  

In fuzzy environment, objective functions of the problem are to be expressed as fuzzy goals by means of 

incorporating an imprecise target value to each of them.  

In the decision making context, since minimum value of an objective of a DM is highly acceptable, solutions 

achieved for minimization of objectives of individual DMs can be considered the best solutions, and they are 

determined  as );,( lb
C

lb
S

lb
N E,E,Elb

F
lb
L XX  and );,(

fb
L

fb
C T,F

fb
F

fb
L XX , respectively, by employing GA scheme, where 

lb and fb indicate the best for  leader and follower, respectively.  

Then, the successive fuzzy goals take the form: 

NE ~
lb
NE , SE ~

lb
SE  and CE ~

lb
CE  

CF ~
bf

CF     and LT ~
bf

LT  ,
                                                         (9) 

where ‘
~
 ’ indicates softness of  restriction and signifies ‘essentially less than’ in [34].   

Again, since most dissatisfactory solutions of DMs correspond to maximum values of objectives, the worst solutions 

of leader and follower can be obtained by using the same GA scheme as );,( lw
C

lw
S

lw
N E,E,Elw

F
lw
L XX  and 

);,(
fw

L
fw

C T,F
fw
F

fw
L XX , respectively, where lw and, fw indicate worst cases for leader and follower, respectively. 

As a matter consequence, 
fw

L
fw

C
lw
C

lw
S

lw
N TF,E,E,E and could be taken as upper-tolerance values towards achieving the 

respective fuzzy target levels LCCSN TF,E,E,E and . 

Again, fuzzy goal representation of control vector LX can be reasonably taken as: 

                                                
LX

~
 bl

LX
                                                 

(10) 

Now, it may be mentioned that an increase in the valueof a goal defined by goal vector in (10) would never be more 

than upper-bound of corresponding generator capacity defined in (6).  

Let ),(,
max
L

t
L

t
L XXX   be the vector of upper-tolerance values to achieve the associated vector of fuzzy goal levels 

defined in (10). 

Now, characterization of membership functions of fuzzy goals is described below. 

Characterization of Membership Function  

The membership function of the fuzzy objective goal EN can be algebraically presented as:  
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where )( lb 
N

lw 
N EE  represents tolerance range for fuzzy goal achievement defined in (9).  

Again, membership functions associated with other two objectives, Es and Ec of leader as well as objectives of 

follower can be obtained.  

The membership function associated with LX can be obtained as: 
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where )bl
L

t
L XX ( represents vector of tolerance ranges for achievement of vector of decision variables defined in 

(10). Now, minsum FGP model of the problem is presented as follows. 

Minsum FGP Model  

To formulate FGP model of the problem, membership functions are converted into membership goals by assigning 

highest membership value (unity) as target level and introducing under- and over-deviational variables to each of 

them. In achievement function of minsum FGP model, minimization of the sum of weighted under-deviational 

variables associated with membership goals is taken into account. 

The model appears as [31]: 

Find ),( FL XXX so as to:  

Minimize:   
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  subject to the constraints in (6) and (7),     (13)    

 

where 0
kk d,d , (k = 1,…,5) represent under- and over-deviational variables, respectively. 0

66 d,d indicate 

vector of under- and over-deviational variables, respectively, and where I is a column vector.  Z is goal achievement 

function, 0
kw , k = 1, 2, 3, 4, 5are relative numerical weights of importance of achieving target levels of goals, 

and 0
6w is the vector of numerical weights associated with 

6d , and they are actually the inverse of respective 

tolerance ranges [31]concerning achievement of goal levels. 

The effective use of the model in (13) is illustrated below through a case example.  

 

A Case Example 

The IEEE 30-bus 6-generator test system in [15] is taken into account to demonstrate the proposed method.  

The system is with 41 transmission lines and total power demand for 21 load buses is 2.834 p.u. The generator 

capacity limits and load data were discussed in [15] previously.  The different types of coefficients associated with 

the model are given in Tables 1-4. 

 

Table 1. Power generation cost-coefficients 

Generator g1 g2 g3 g4 g5 g6 

Cost-Coefficients       

a 100 120 40 60 40 100 

b 200 150 180 100 180 150 

c 10 12 20 10 20 10 
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Table 2. NOx emission-coefficients 

Generator g1 g2 g3 g4 g5 g6 

NOx Emission-Coefficients       

dN 0.006323 0.006483 0.003174 0.006732 0.003174 0.006181 

eN -0.38128 -0.79027 -1.36061 -2.39928 -1.36061 -0.39077 

fN 80.9019 28.8249 324.1775 610.2535 324.1775 50.3808 

 

Table 3. SOx emission-coefficients 

Generator g1 g2 g3 g4 g5 g6 

SOx Emission-Coefficients       

dS 0.001206 0.002320 0.001284 0.000813 0.001284 0.003578 

eS 5.05928 3.84624 4.45647 4.97641 4.4564 4.14938 

fS 51.3778 182.2605 508.5207 165.3433 508.5207 121.2133 

 

Table 4. COx emission-coefficients 

Generator g1 g2 g3 g4 g5 g6 

COx Emission-Coefficients       

dS 0.265110 0.140053 0.105929 0.106409 0.105929 0.403144 

eS -61.01945 -29.95221 -9.552794 -12.73642 -9.552794 -121.9812 

fS 5080.148 3824.770 1342.851 1819.625 13.42.851 11381.070 

The B-coefficients in [20] are presented as follows:  

 66
0244.00005.00033.00066.00041.00008.0

0005.00109.00050.00066.00016.00010.0
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  0486.900,
)61(

0030.00002.00009.00017.00060.00107.00 


 EBB  

Now, to formulate MOBLP model, it is considered that )( g5g3 P  ,PLX is under the control of leader, and 

)( g6g4g2g1 P,P,P ,PFX is that of follower. 

Using the data presented in Tables1- 4, the executable MOBLP model for EEPGD problem is stated as follows.  

 

Find )( g6g5g4g3g2g1 PP,P,P,P,PX so as to: 
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)2133.121P14938.4P003578.05207.508P45647.4P001284.0

3433.165P97641.4P000813.05207.508P45647.4P001284.0
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(follower’s objectives) (18) 

 

subject to,
 

,50.0P05.0 1g  ,60.0P05.0 2g    

  
,00.1P05.0 3g  ,20.1P05.0 4g   

  
,00.1P05.0 5g  ,60.0P05.0 6g 

 

(generator capacity constraints)                      (19)                                

and ,0)L834.2(PPPPPP T6g5g4g3g2g1g   

(Power balance constraint)                 (20)    

Now, in the GA scheme, ‘Roulette-wheel selection’ and ‘single point crossover’ with populationsize50 are initially 

introduced. The parameter values adopted to execute the problem are crossover- probably = 0.8 and mutation- 

probability = 0.07.  

The computer program developed in MATLAB and GAOT (Genetic Algorithm Optimization Toolbox) in 

MATLAB-Ver. R2010a is used to execute the problem. The execution is made in Intel Pentium IV with 2.66 GHz. 

Clock-pulse and 4 GB RAM.  

 

Following the procedure, individual best solutions of leader and follower are found as:

 

1413.708);0.051.00,1.20,0.5177,0.05,(0.05,

)E;P,P,P,P,P,P( lb
Ngggggg 654321

 

)1;0.600.7320,0.05,0.8379,0.60,(0.05, 535.549

)E;P,P,P,P,P,P( lb
S6g5g4g3g2g1g


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24655.09);0.600.05,1.0985,0.05,0.60,(0.50,

)E;P,P,P,P,P,P( lb
Cgggggg 654321

 

595.9804);0.35180.5236,0.9926,0.5832,0.2863,(0.1220,

)F;P,P,P,P,P,P(
fb

Cgggggg 654321

 

0.0170).;0.33730.8533,0.5001,0.9764,0.0978,(0.0861,

)T;P,P,P,P,P,P(
L6g5g4g3g2g1g



fb

 
Further, worst solutions of leader and follower are obtained as:  

1416.167);0.600.5269,0.05,0.6036,0.60,(0.50,

)E;P,P,P,P,P,P( lw
Ngggggg 654321

 

1551.043);0.051.00,1.2,0.1002,0.05,(0.50,

)E;P,P,P,P,P,P( lw
Sgggggg 654321

 

)2;0,0.050.7040,1.00.05,1.00,(0.05, 86.4752

)E;P,P,P,P,P,P( lw
C6g5g4g3g2g1g


 

705.2694);00,0.60097,0.05,1.0.600,0.13(0.500,

)F;P,P,P,P,P,P(
fw

C6g5g4g3g2g1g

 

0.0696);0.10361.00,1.20,0.05,0.05,(0.50,

)T;P,P,P,P,P,P(
fw

Lgggggg 654321

 
Then, the fuzzy objective goals are obtained as: 

NE ~ 1413.708, SE ~ 1549.535, CE ~ 24655.09, CF ~ 595.9804 , LT ~ 0.0170. 

The fuzzy goals for power generation decisions under the control of leader appear as:  

3gP ~  0.15 and 
5gP ~ 0.15. 

The upper-tolerance limits of LCCSN TandF,E,E,E are obtained as 

).,()T,F,E,E,E(
fw

L
fw

C
lw
C

lw
S

lw
N 0.0696705.2694,24752.86,1551.043,1416.167, Again, the upper-tolerance limits 

of the decision variables associated with LX  are considered ).6.0,6.0()P,P( t
5g

t
3g 

 
Then, the membership functions are constructed as follows:  

 

,
708.1413167.1416

E167.1416 N
EN 


 ,

535.1549043.1551

E043.1551 S
ES 


 ,

09.2465586.24752

E86.24752 C
EC 




,
9804.5952694.705

Z2694.705 1
FC 


 ,

0170.00696.0

T0696.0 L
TL 




 

,
40.060.0

P60.0 3g

P 3g 




40.070.0

P60.0 5g

P 5g 




 
Then, the executable minsum FGP model is constructed as follows.  

Find )P,P,P,P,P,P( 6g5g4g3g2g1gX so as to: 

Minimize Z = 
  7654321 d5.2d5.2d0114.19d0092.0d0102.0d6631.0d4067.0

 
and satisfy  

 

1dd
535.1549043.1551

fPePd043.1551

22

iSgiiS
2

giiS

n

1i 







 

1dd
708.1413167.1416

fPePd167.1416

11

iNgiiN
2
giiN

n

1i 






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1dd
09.2465586.24752

fPePd86.24752

33

iCgiiC
2

giiC

n

1i 






 

1dd
9804.5952694.705

)cPbPa(2694.705

44

n

1i

igii
2

gii









 

1dd
0170.00696.0

BPBPBP0696.0

55

n

1i

n

1j

n

1i

00gi0gijg iji






  

 

 

,1dd
40.060.0

P60.0
66

3g







1dd
40.060.0

P60.0
77

5g





  

 

subject to the constraints in (19) and (20). (21) 

 

The function Z in (21) acts as evaluation function in solution search process.

 The function to evaluate the fitness of a chromosome takes the form: 

 ,SP,...,2,1v,dwdw)Z()E(Eval v

5

1k

7

6k

kkkkvv   
 

 )(   

where PS stands for population-size.        (22)    

 where
vZ)( represents the achievement function )(Z to measure fitness value ofvth chromosome. 

The best objective value )( *Z  at any solution stage is obtained as:  

   }SP,...,2,1vEevalminZ v
*

 ){ (       (23) 

The resultant objective values are found as: 

 0.0522) .73,669.95,6291550.38,24 (1414.69, )T,F,E,E,E( LCCSN   

with the respective membership values: 

 ,0.0255).479,0.69120.4357,0.8 (0.5978,,,,,
LCCSN TFEEE )μμμμ(μ

 
The power generation decision is obtained as: 

( 0.47737). 0.40, 0.9885, 0.40, 0.4197, (0.1821,)P,P,P,P,P,P 6g5g4g3g2g1g   

The bar-diagram to represent power generation decision is depicted in Figure 1.  

 

 

Figure 1. Graphical representation of power generation decision 
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The result indicates that the solution is quite satisfactory, and sequential executions of decision powers of DMs are 

preserved there in the hierarchical order of optimizing objectives of the EEPGD problem. 

 

Performance Comparison 

To highlight more the effectiveness of the proposed method, a comparison of resultant solution is made with the 

solution achieved by employing the conventional minsum FGP method in [35]. 

 

Here, values of the objectives are found as: 

0.0175). .60,719.38,6311550.01,24 (1414.847, )T,F,E,E,E( LCCSN   

 

The resultant power generation decision is: 

0.3389). 0.8938, 0.4379, 0.9898, 0.1409, (0.05,)P,P,P,P,P,P( 6g5g4g3g2g1g   

The above result indicates that reduction of49.43 kg/hr of NOx emission and reduction of1.87 $/hr fuel cost are made 

here by using the proposed method without sacrificing total units of power demand. 

 

Conclusions and Future Research Direction 

The main advantage of using BLP to EEPGD problem is that optimization of objectives individually in a 

hierarchical order can be obtained in inexact environment. Again, order of hierarchy of objectives as well as fuzzy 

descriptions of objectives / constraints can easily be rearranged under the flexible nature of the proposed FGP model 

in decision making horizon. Furthermore, computational burden arises with linearization of objectives by using 

conventional technique does not involve here owing to the use of bio-inspired tool to make power generation 

decision. Here, it may be claimed that the GA based FGP method presented here may open up future research for 

thermal power generation decision and to make pollution free living environment on earth. However, the proposed 

method can be extended to formulate multilevel programming (MLP) [36] model with multiplicity of objectives in 

power plant operation and management system, which is an emerging problem in future research.  
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